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A b s t n e L  We invesligate the enqy, elastic modulus and normal modes of oscillation 
of flux line lattices lb dwl with the long range nature of the flu line potential, lhe 
Ewald sum technique was used. The dependence of the normal mode as a function of 
the transverse waveveclor in the ?D hexagonal Brillouin zone and lhe z wavevector k, 
is discussed in detail. We found lwo normal modes corresponding to the shear and the 
compression of the lattice. ?he frequencies of these lwo arc usually very different from 
each other. Because of the long range nature of the potential. the compressive mode 
behaves like a plasma oscillation. At zero momentum the exciations are gapless, because 
the potentialiy is exponential in charaner at large distances At a finite 1 wavevector 
we found that the transverse frequencies drop off rapidly as the transverse wavevector 
is increased. Our elastic moduli are compared with those wmpuled using a continuum 
approximation by SudW and CO-worlw. Quantitative differences are found in the low 
field, small k region as well as the high field, large k region. 

1. Introduction 

For a sufficiently strong magnetic field, flux lies penetrate type-I1 superconductors 
and form a lattice. lb calculate the physical properties of the flux lattice, it is often 
necessary to perform averages over the normal modes of the system. It is thus 
important to understand the elastic coefficient5 and the normal modes in detail. 

The interaction energy U of flux lines of arbitrary shape was given recently in 
tenns of the penetration depths along the ab plane and the z direction, A,, and A,, 
by Sudbe and Brandt [I] based on the London equations as 

where 

Here V .  '3 = 11.4 ' 1  - V.4. U' V.Q(k)  *t = V,S,,, v:(k) = ( V , q i q j A 2 ) / ( l  + AlkZ + A z q 2 ) ,  
V, = 1/( 1 + AlkZ).  The wavevector q lies in the a b  plane of the crystal and is given 
by q = k x 6 where c is a unit vector along the c axis of the crystal. Al  = A:,, 
A2 = A: - ?b incorporate the effect of the core structures of flux lines a cut-off 
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factor of exp(-Ck:) was introduced into V. Here C = (E/2.r)2 where [ is the 
coherence length. 

For a flux lattice, the physical properties involve a sum over the reciprocal lattice 
vectors Q of the lattice. Because the penetration depth is much larger than the lattice 
spacing of the flux lattice, the interaction between flux lines is long range in nature. 
We have thus general id  the Ewald sum technique to the present calculation. This 
consists of splitting the sum over Q into two rapidly convergent sum in momentum 
and position space. We verify the accuracy of the calculation by varying the Ewald 
cut-off parameter and making sure that the final result is unchanged. Our result is 
summarized in (8) below. 

This paper is organized as follows. The total energy of the lattice, the normal 
modes and the elastic coefficients are discussed in the first three sections for YBCO 
and BSCCO. The mathematical details of the Ewald sum is discussed in the next 
section. We conclude in the last section. 
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2. Energy 

The energy of a periodic a m y  of straight flux l i e s  is 

,, ,.,. .,,,, 

Plgure 1. Energy per particle (in units 01 B*/4n) of triangular BSCCO flux lattices as n 
function of the inverse magnetic Beld (in units 01 B.2) lor diReren1 reduced temperatures 
t = TIT,. 

The sum runs over all reciprocal lattice vectors Q at a given inclination of B with 
respect to E. The basis vectors of the undistorted equilibrium lattice with B tilted 
by an arbitrary angle 0 away from the &axis are given by [l] al = C2 and a = 
C(y& + &/y)/2, where y4 = (M/M,)sin2@ + cos2@ and C2 = 2a0/&B. 
The corresponding reciprocal lattice vectors are given by Q,, = nQ1 + mQ,, 
with m,n integers and Q1 = (2s/C)(2/y - 7 C / 6 ) , Q 2  = (2r /C)(Zy/&)& 



Statics and dynamics of flux line lattices 447 

BSCCO qYam 1S"lCB 

,5312 

.Y11 

.5m 

W S W 6  

. S W  

.5wz 

.5 
0 2 1 6 8 

l f i  

F b r e  2. As figure 1, but for square BSCCO Run ?attic-. 

Figure 3. As figure 1, but for triangular YBCO flux lattices 

For simplicity, we consider in the following the case Bllc , it is straightforward to 
generalize the calculation to the general case. In the following, we shall use units 
such that the flw lattice constant is equal to 1. 

We have evaluated the energies of square and triangular lattices for BSCCO 
and YBC. For YBCO and BSCCO, we have used mass ratios, M , / M  of 25 and 
625 and GL parameters K of 50 and 90 respectively. We found the energy of the 
square lattices to be higher. For example, for BSCCO for BIB,, = 0.1 and t = 
T/T ,  = 0.1, the square lattice energy per particle is 0.501 1905599 in units of B2/4n  
whereas that for the triangular lattice is 0.501 1846805008. We show in figures 1-4 
the energy per particle as a function of the inverse reduced magnetic field for different 
reduced temperatures for the triangular and square lattkes for BSCCO and YBCO 
respectively. As one can see, the dependence on the magnetic field is close to but 
not exactly an inverse dependence. 
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. .. 

Figure 4. As figurc 1. but for square YBCO flux lalliccs. 

3. Normal modes 

The harmonic energy U,, of vibration can be written in terms of the deviations 8 of 
the flux lines from the lattice positions as 

(2) 

k.= 0. YBCO 

r J X r 
Figure 5. TIC normal mode frcqucncis (in unitr ol B2/4s) along symmetry directions 
in the m hexagonal Brillouin zone at k, = 0 for YBCO. 
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Flyre 6. As figure 5,  but at h. = 0.3.  
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r J h  X r 
Figure 7. As figure 5,  bul at k. = 3,6,9. 

The dynamical matrix is evaluated with the Ewald sum technique, the details of 
which are discussed in section 5. For any given wavevector, the normal modes are 
obtained by diagonalizating the 2 x 2 matrices The frequencies are functions 
of the magnetic field and temperature. As a representative example, we first focus our 
discussion for a field stength of 1 T and reduced temperature of 0.8. The eigenvalues 
w of this m a t h  along symmetry directions of the ZD hexagonal Brillouin zone for 
two values of the z wavevector kz (0 and 0.3) for YBCO are shown in figures 5, 6 
and 7 in units of B2/4n.  For k ,  = 0, the very different slopes of the two modes 
at small wavevectors reflect the difference in magnitude between the elastic modulus 
cSs and cI1 and is a manifestation of the long range of the potential and the near 
inmmpressibility of the system. For a finite k,, the normal frequencies is finite at 
k ,  = 0, and of magnitude c44kZ. More interesting is the rapid decrease of the shear 
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mode frequency as the transvew wavevector is increased. This comes about because 
V& nearly cancels If& for q > qs = 1/d& As k, is further increased, V b  is 
decreased and the shear mode eigenvalue is no longer small. This is illustrated in 
figure 7 for k, = 3, 6 and 9. A typical scan of the 2~ dispersion for BSCCO for 
k, = 0.3 is shown in figure 8. Because A, is now much bigger, the rapid drop of 
the transverse mode occurs over a much narrower wavevector range. 
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, . ,  

r J X r 
Figure 8. As Bgum 5,  but at ks = 0.3 for BSCCO. 
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F@re 9. The transverse frrquencim (in units of B2/4rr) as a function of k2 toor 
transverse momentum (k, k) at different values of k, for YBCO. 

lb exhibit the behaviour of the transverse branch at Enite wavevectors more 
clearly, we show in figure 9 the eigenvalues of this branch for different values of ICz 
(1,2,3) as a function of kZ for k, = IC, = IC. After the rapid fail-off, the transverse 
branch is nearly linear in the transverse momentum squared. Its magnitude increases 
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as ICz is increased. A similar set of curves is shown in figure 10 where the overall 
magnitude of k, is decreased. (O.l,O.Z, 0.3) Because the magnitude of k, is smaller, 
the shift in w for different k, is much smaller and the three curves at large q nearly 
lie on top of each other. WO similar sets of curves for BSCCO are shown in figures 11 
and 12 Because Az is now much bigger, the shift as a function of k, is much smalter 
in this case than that for YBCO. 

Flgurr 10. As figure 9, but at a smaller range of values of L, for YBCO. 

+I. Lo 3. BSCCO 

+. - .!4 
3 

0 1 16 8 26 3.5 

Figure 11. As figure 9. but at different values of k, for BSCCO. 

?b emphasize the dependence on kZ, we show in figure 13 the transverse frequen- 
cies as a function of k, for three different values of IC,. Expanding V b  as a power 
series of (1 + A l k ~ ) / A z q z ,  we expect the slope of the curve to decrease as k, is 
increased, as is shown in the figure. We note that this slope is much smaller than 
that at zero transverse wavevector, c4* As expected, this slope is controlled by the 
mass ratio which determines AV On the other hand, the slope is not just the simple 
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F i y m  12. As 6gurc 9, bul at a smaller range of values of k. for BSCCO, 

r=o.t  to 03, YBW 

Figure 13. The tran~vcrx frequencies (in units of B2/4s) as a function of k, for 
diEerent transverse momentum (k=, k , )  for YBCO. 

ratio M Z / M .  We show the same dispersion over a much wider range in IC, in figure 
14. As IC, is increased, the dependence on k, is reduced. The dependence of the 
transverse frequencies on k, for BSCCO is shown in figure 15. The magnitude of 
the frequencies are much smaller because A2 is now much bigger. 

The dependence of these normal frequencies on other physical parameters is what 
one expected. TO illustrate, we show in figure 16 the ZD dispersion curves at IC ,  = 0.3 
for BSCCO for a much smaller magnetic field of 100 G. Now the lattice spacing in 
comparison with the penetration depth is much larger. Thus the potential is shorter 
in range. The compressive branch now exhibits a much stronger dispersion. 
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0 

Fignre 15. As figure 13, but for BSCCO. 

4. Elasticity 

The elastic coefficients cj, are defined by 

@(k) = kmkg[Cli(k) - C66i t 6mp[(kZ t '$)%6 + k Z c ~ ( k ) I .  (4) 

The elasticity for anisotropic flux lattices were recently studied by Houghton et 
a1 [2] from the Ginsburg-Landau equation and by Sudbm et a1 [l] from the London 
equation. In both these calculations, the elastic constants are calculated with the 
continuum approximation so that the summation over the reciprocal lattice Q of the 
flux lattice is replaced by an integral. In this paper, we evaluate these coefficients 
exactly. We found that at k = 0, the dependence of cq4 on the magnetic field is well 
produced by the analytic formulae previously proposed. The difference and similarity 
with the results from the continuum approximation is highlighted in figures 16 to 18. 

I i . ,' 
. I  ,' 
: ,I' 
: I 

I 

- . .  - 
.. I 

' ' ' 1 ~ ~ ' 1 ~ ~ ~ 1 ~ , ~  I I I  I 
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prsUrr 16. The normal mode fqumcies  (in units of B2/4m) "long symmetry dircctiom 
in the ?D haagonal Brillouin mne for I ,  = 0.3 a1 B = l W  G for BSCCO. 

Figure 17. "he elastic energy c*,(kz) k: at high fields as a function of k, b = B j H u  = 
0.1,  (I = ( Z Q O / ~ ~ B ) O . ~  is the flux lattice constant. Also shown arc the rcsulls of 121. 

In figures 17 and 18 we show ~ ~ ~ ( k ~ ) k : ,  which is a measure of the elastic energy, 
as a function of kz at high field for BSCCO for two different ranges of k,. There is 
some difference from the continuum approximation, at large I., but it is quite small. 

In figure 19 we show results for cS6 at k = 0 as a function of the magnetic field. 
The ditference between the continuum approximation and our result is also quite 
small for cSe 

The result in the previous section of the rapid drop in the shear mode eigenvalue 
as the transverse wavevector is increased can be interpreted as a substantial depen- 
dence of the shear modulus on the transverse wavevector. This fact is not discussed 
in previous work. 
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Figure 18. The elastic energy crr(k,)k: at high fie128 as a funclion of k, over a larger 
range of wavevector. A h  shown are the results of [Z]. 

Figure 19. The elaslic coefficient c66 at k = 0 as a function of the magnetic Beld B. 
Also shown are the msuI(6 of 111 labelled as HPS. 

5. Ewald sum 

Direct evaluation of (1) is impractical because it is slowly convergent for large Q. lb 
get a rapidly convergent result, we use the b a l d  sum method where we rewrite the 
sum over Q in (1) into sum in real space and a sum in reciprocal space. 

There are two kinds of terms involved in the summation, the first comes from the 
V,, term in (1) and is given by 
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The other one comes from the Vaa term and is given by 
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x exp[-C(k + Q)?l 
where we have used the identity qaqa = k:6F8 - kek8. E, can be obtained from 
the derivative with respect to r of the expression 

Using the identity f," dre-(= - - 1 /x, it can be written as 

Here Il,z is obtained by dividing the integration over E into two parts from 0 to 11 
and from 11 to 03 for a suitable Ewald cut-off parameter 7. 

The sum over Q in I, converges very quickly. Now we transform the first summation 
toonein realspacewiththerelation CRexp( ip .R)  = ( 2 r r ) ' n C Q 6 ( p + Q )  where 
n is the density. 

x exp(-ikl . RI). 

The integration over p can be easily done and we get 

The summation in R for Il  is also rapidly convergent Our purpose is thus accom- 
plished. 

The same procedure can be used to treat E,. Instead of writing the formula as an 
integration over a single parameter E ,  we have to introduce two auxiliary integrations 
and divide each integral into two parts. More precisely, define A = A;' + k:, 
~ = ( A , + A , ) - ' + ( M / M , ) ~ f , f ,  =A+(Q+k):, f,= B+(Q+k):; E,can 
be obtained from the derivative of 

= x e x p [ i ( k  + Q I L .  r - f (k+  Q):l/(flf2). 
Q 
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Divide the integration into four parts depending on whether is larger or smaller 
than q. Only the term with both el and ea less than q does not contain an exponential 
factor and hence is slowly convergent in Q space. This term (called Jl below) is 
converted into a sum over R space. More precisely: 

where 

+ - ik.  R) /n] . 
4(c1 + e,  t C) 

Now change the variables of integration to s = cl + cz, t = Acl + Be2; we get 

exp[-q(A;' + Q2) - C Q f I  
A;' + Q 2  

U / N L  = 
8 

xexp -<A;'- ( 
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where the function g is defined as 

exp(-Bs)l  - {exp[-(A - B ) s ] )  i f S . $ V  
1 

A - B  { ~ e x p [ - A s t ( A - B ) q ] l - { e x p [ ( A - B ) ( s - 2 ~ ) ] )  i f q . $ s < 2 q .  

This is the main result of the present paper. Despite its complicated appearance, the 
integration involved in the above expression are well defined and rapidly convergent. 
We have evaluated it numerically. The Ewald parameter q is chosen to be n/x so 
that the range in Q and R is comparable. The integral over e is evaluated with a 
simple Simpson’s rule subroutine. 
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6. Conelusion 

In conclusion, we have investigated the normal modes of vibration of the flux lattice. 
We found two normal modes corresponding to the shear and the compression of 
the lattice. The frequencies of these two are usually very different from each other 
at moderate magnetic field strengths Because the penetration depth is much larger 
than the lattice spacing the potential is long range, the compressive mode behaves 
Wce a plasma oscillation At zero momentum the exciations are gaplas because the 
potentially is eventually exponential in character at large distances. As the magnetic 
field is decreased, the potential becomes less long range and the compessive mode 
exhibits a stronger dispersion. 

At a finite z wavevector we found that the transverse frequencies drop off rapidly 
as the transverse wavevector is increased. The wavevector range in which this transi- 
tion takes place is controlled by the mass anisotropy. 

Much of recent work on flux lattices are based on elasticity theoly. Thus it is 
important to study them in detail. We have provided here expressions for the elastic 
modulus that are rapidly convergent and hence is useful numerically. Our result 
can be significantly different from previous results obtained using the continuum 
approximation. 
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